Multidisciplinary Analysis of a Hypersonic Engine

ISTAR Flowpath

Ambady Suresh Mark Stewart

2002 CISO Review

Outline

- Overview & Motivation
- Description of Component Simulations
- Consistent Multidisciplinary Solutions
- Code Coupling Issues
- Benefits & Costs of MD Analysis

Aerodynamic Analysis

Combustion Analysis

Combustion Analysis

Thermal Solid Analysis

Structural Analysis

ISTAR Multidisciplinary Simulation: Objectives

- Develop high fidelity tools that can influence ISTAR design
- In particular, tools for coupling Fluid-Thermal-Structural simulations
- RBCC/TBCC designers carefully balance aerodynamic, thermal, weight, & structural considerations; consistent multidisciplinary solutions reveal details (at modest cost)
- At Scram mode design point, simulations give details of inlet & combustor performance, thermal loads, structural deflections

INFORMATION &
COMMUNICATIONS

2002 CISO Review

Approach Solution

- Full Navier-Stokes solution using Overflow.
- Simulation includes forebody, canard, & engine inlet—only forebody geometry that influences engine inflow
- Chimera five block structured grid with 9x10⁵ cells.
- k-ω turbulence model with low-Reynolds number form—no compressibility correction
- **Equilibrium chemistry**
- **Sets Combustor inflow**
- Yields heat & pressure loads for thermal & structural analysis

2002 CISO Review

Combustor Solution:

Fuel mass fraction iso-surface colored by temperature

Combustor Solution

- Full Navier-Stokes plus finite-rate chemistry solution using Vulcan.
- Composite five block grid with 1.9x10⁵ cells.
- 6-species 3-step finite-rate gaseous Ethylene model
- Inflow profile from Approach solution.
- k-ω turbulence model with wall functions; Compressibility correction
- Each injector modeled as a single triangular slot with equivalent area, massflow, and momentum. (normal injection).
- · Flame holding cavity included.
- Yields heat & pressure loads for thermal & structural analysis

Combustor Solution:

1-D Averaged Quantities

2002 CISO Review

Thermal and Structural Solutions

- ANSYS—commercial finite element solver.
- 3-D unstructured grid with 1.3x10⁵ nodes and 8.6x10⁴ tetrahedra
- Temperature dependent material properties for Inconel 625, Titanium β21S
- Coolant passages modeled as a bi-layer material

- Neglects details of heat conduction around coolant passages, plus structural effects
- · Some modeling of coolant circuit.
- Thermal model yields temperatures from heat loads, coolant system, and material properties
- Structural model yields deflections & stresses from pressure & temperature loads

Ansys Thermal/Structural Grid

2002 CISO Review

Coupled Thermal Solution

Consistent Multidisciplinary Solutions

- Fluid-Fluid Coupling: Flow quantities are the same where the Fluid codes meet
- Fluid-Thermal Coupling: Heat fluxes & Temperatures are the same where Fluid & Thermal codes meet
- <u>Fluid-Structural Coupling:</u> Deflected walls are the same as the Fluid boundaries

2002 CISO Review

ISTAR Multidisciplinary Simulation: Interpolation & Consistency

- Interpolation transfers inflow profiles, thermal & pressure loads, displacements from code-to-code.
- One-pass:

```
( Fluid \Rightarrow Thermal \Rightarrow Structural )
```

Boundary conditions often inconsistent.

Consistency achieved with multiple passes:

```
( Fluid ⇔ Thermal ⇔ Structural )
```


Fluid-Thermal Iteration

In engine case, L2 Norm of:

 $\Delta T = 500 \, {}^{\circ}R.$

2002 CISO Review

Challenging Issues in Coupling: Toolkit Specific

Robust interpolation between codes on wetted surface

- Accept all types of grids and formats.
- Some tolerance for out of plane target points.
- Subsetting of source grids.
- Extrapolation at boundaries.

Update fluid grids to include surface deflections

 Difficult when deformations, particularly shear deformations, exceed the grid spacing.

Challenging Issues in Coupling: Code Specific

- Noisy heat fluxes from fluid codes
- Code compatibility w.r.t coupling (turbulence models, wall functions?)

2002 CISO Review

Calculation of Accurate Heat Fluxes

Benefits & Costs

(Single Discipline vs. Multidisciplinary)

- Cooling system design potentially aided by thermal/fluid calc.
- Computational cost: MD adds 100% of single discipline
- Cost of Setting up MD problem: a toolkit would help (Interpolation++)
- Disparate turn around times: thermal & structural time is <1% of fluid & combustion

2002 CISO Review

Summary

- Single discipline simulations coupled into Multidisciplinary simulation.
- Application is Scram design point of ISTAR concept vehicle
- Reveal some code coupling issues and obstacles, costs and benefits

